Solamente metadatos

Archaea from the ANDEEP3 expedition

Última versión Publicado por Antarctic Biodiversity Information Facility (ANTABIF) en 19 de marzo de 2019 Antarctic Biodiversity Information Facility (ANTABIF)
Fecha de publicación:
19 de marzo de 2019
Licencia:
CC-BY 4.0

Descargue la última versión de los metadatos como EML o RTF:

Metadatos como un archivo EML descargar en Inglés (14 KB)
Metadatos como un archivo RTF descargar en Inglés (12 KB)

Descripción

This dataset describes a 16S ribosomal DNA clone library analysis, performed to assess archaeal diversity within three surficial sediment samples obtained from the bathypelagic zone (depth : 2,165 -3,406 m) of the Weddell Sea, Antarctica. The nearly complete 16S rDNA gene (1440 bp) was obtained for 146 clones and 46 phylotypes were defined. The majority of the sequences (> 99%) formed three clusters within the Marine Group I Crenarchaeota. The most important cluster, with 78.8% of the clones, included Candidatus Nitrosopumilus maritimus, a mesophilic archaeon able to oxidize ammonia. The most important subgroup in that cluster was the APA4-0cm subgroup (with 62.3% of the clones). This subgroup might represent important Crenarchaeota in the functioning of the bathypelagic sedimentary ecosystems of the Weddell Sea because it dominated the clone libraries in all sampling stations, and was found in sediments separated by very large geographic distances. Only one clone grouped within the Euryarchaeota. This euryarchaeal clone could not be affiliated with any of the previously defined clusters and might represent a novel Euryarchaeal lineage

Versiones

La siguiente tabla muestra sólo las versiones publicadas del recurso que son de acceso público.

¿Cómo referenciar?

Los usuarios deben citar este trabajo de la siguiente manera:

Gillan, David C., and Bruno Danis. 2007. The archaebacterial communities in Antarctic bathypelagic sediments. Deep Sea Research Part II: Topical Studies in Oceanography 54 (16-17) (August): 1682-1690.

Derechos

Los usuarios deben respetar los siguientes derechos de uso:

El publicador y propietario de los derechos de este trabajo es Antarctic Biodiversity Information Facility (ANTABIF). Este trabajo está autorizado bajo una Licencia Creative Commons Atribución/Reconocimiento 4.0 Internacional (CC-BY) 4.0.

Registro GBIF

Este recurso no ha sido registrado en GBIF

Palabras clave

EARTH SCIENCE; BIOLOGICAL CLASSIFICATION; BACTERIA/ARCHAEA

Contactos

¿Quién creó el recurso?:
-

Bruno Danis
Antarctic Biodiversity Information Facility
29, rue Vautier
1000 Brussels
BE
http://www.biodiversity.aq

¿Quién puede resolver dudas acerca del recurso?:

Bruno Danis
Antarctic Biodiversity Information Facility
29, rue Vautier
1000 Brussels
BE
http://www.biodiversity.aq

¿Quién documentó los metadatos?:
-

Bruno Danis
Antarctic Biodiversity Information Facility
29, rue Vautier
1000 Brussels
BE
http://www.biodiversity.aq

¿Quién más está asociado con el recurso?:

Bruno Danis
Usuario
Antarctic Biodiversity Information Facility
29, rue Vautier
1000 Brussels
BE
http://www.biodiversity.aq
David Gillan
Autor
Laboratoire de Biologie Marine
50, av FD Roosevelt
Brussels
BE

Cobertura geográfica

ANDEEP 3 cruise track, from Cape Town (SA) to Punta Arenas (CH). Four study regions were selected, but the main focus was on the Powell Basin and the Weddell Basin of the Weddell Sea, and their slopes. Two comparative samples were taken further north in the adjacent Agulhas and southern Cape Basins, which are separated from each other by the Agulhas Ridge. Four study regions were selected, but the main focus was on the Powell Basin and the Weddell Basin of the Weddell Sea, and their slopes. The major South Atlantic deep-sea basins started forming during Jurassic and Cretaceous times in connection with the Gondwana break-up and seafloor spreading (Brandt et al., 2004a, 2007; Lawver and Gahagan, 2003). The Weddell Basin is separated from the northerly basins by the South- west India Ridge (LaBrecque, 1986). The Powell Basin on the western side of the Weddell Sea was formed in the Tertiary by geological processes opening the Drake Passage and tectonic movements in the Scotia Sea (Lawver and Gahagan, 2003; Mitchell et al., 2000). The oceanography of the deep South Atlantic seafloor is defined by its prominent water mass, the Antarctic Bottom Water (Tomczak and Godfrey, 2001). The Antarctic Bottom Water expands north- wards into the Atlantic basins east and west of the Mid-Atlantic Ridge, like the Agulhas Basin, but can only enter the basins north of the Walvis Ridge (e.g., Cape Basin) via the northerly Romanche Fracture Zone. The Weddell Sea Bottom Water (WSBW), defined by a temperature of 0.7 1C and a salinity of 34.64 ppt (Orsi et al., 1993), is the main water mass above the Weddell Sea benthos (Fahrbach et al., 2001). The WSBW flows from the western Weddell Sea into the Scotia Sea and South Sandwich Forearc, and its circulation is driven by the Weddell Sea gyre. The sediments in the bathyal and abyssal Weddell and Powell Basins are dominated by silt and clay.

Coordenadas límite Latitud Mínima Longitud Mínima [-71,31, 0], Latitud Máxima Longitud Máxima [-61,5, 64,64]

Cobertura taxonómica

No hay descripción disponible

Dominio Archaea

Cobertura temporal

Fecha Inicial 2005-02-21
Fecha Inicial 2005-03-14
Fecha Inicial 2005-03-18

Datos del proyecto

No hay descripción disponible

Título ANDEEP: Antarctic Deep Sea Biodiversity
Descripción del área de estudio The study area of this dataset was set in the Southern Ocean and focused on deep sea stations distributed on the continental slopes of the eastern Weddell Sea (off Kapp Norvegia) and western Weddell Sea and the South Orkney Islands, and deep Cape, Agulhas, Weddell and Powell BasinsSouthern Ocean. The Southern Ocean deep-sea is a very under sampled area, according to a recent gap analysis carried out by Griffiths et al (2011).

Personas asociadas al proyecto:

Angelika Brandt
Investigador Principal

Métodos de muestreo

Archaeal communities were analyzed in sediments in three bathypelagic stations (2200-3400m) sampled during the ANTXXII-3 cruise of RV Polarstern (ANDEEP3). Sediments were sampled using a box-corer. The sediments were immediately and aseptically sampled using 3 ml polyethylene (PET) cryovials (top 2 cm of the sediments). The cryovials were immediately frozen in liquid nitrogen and the samples were then stored at -20°C. Six replicate samples of the same core were collected at each site.

Área de Estudio Bathypelagic sediment samples were taken from 3 stations during the ANDEEP3 expedition to the Weddell Sea.
Control de Calidad PCR-generated chimeric sequences were first detected and eliminated using three different softwares : CHIMERA_CHECK version 2.7 of the Ribosomal Database Project II (Cole et al., 2003), Bellerophon (Huber et al., 2004), and Pintail version 0.33 (Ashelford et al., 2005). Sequences were then submitted to BLAST version 2.2.12 to identify the closest relatives and download their 16S rDNA sequence (Madden et al., 1996). All sequences were manually aligned and analyzed using Se-Al version 2.0a11 (Rambaut, 1996). Alignments and similarity calculations were also performed using the EMBOSS-Align tool of the EMBL-EBI (http://www.ebi.ac.uk). Distance and maximum-likelihood trees were generated with the Phylip program package, version 3.6 (Felsenstein, 2002). Distance trees were generated with "Dnadist" using Jukes-Cantor distances and Neighbour-Joining. Maximum-likelihood trees were generated with "Dnaml" (Ti/Tv=2.0; empirical base frequencies, one category of sites with a constant rate of variation). The statistical significance of the phylogenetic groups within the trees was tested by using bootstrap analysis with the Phylip programs "Seqboot" and "Consense" (100 bootstrap replicates, using using Jukes-Cantor distances and Neighbour-Joining). Trees were created using the program Treeview (version 1.6.6.).

Descripción de la metodología paso a paso:

  1. A MICROBIAL_SEQUENCE_SET Description file describing 3 data sets was uploaded to the ANTABIF IPT instance (http://ipt.biodiversity.aq).

Referencias bibliográficas

  1. Brandt A, Gooday AJ, Brandao SN, Brix S, Brökeland W, Cedhagen T, Choudhury M, Cornelius N, Danis B, De Mesel I, Diaz RJ, Gillan DC, Ebbe B, Howe JA, Janussen D, Kaiser S, Linse K, Malyutina M, Pawlowski J, Raupach M, Vanreusel A, 2007. First insights into the biodiversity and biogeography of the Southern Ocean deep sea. Nature 447:307-311. http://dx.doi.org/10.1038/nature05827

Metadatos adicionales

marine, harvested by iOBIS