Description
Methane emissions from aquatic and terrestrial ecosystems play a crucial role in global warming, which is particularly affecting high-latitude ecosystems. As major contributors to methane emissions in natural environments, the microbial communities involved in methane production and oxidation deserve a special attention. Microbial diversity and activity are expected to be strongly affected by the already observed (and further predicted) temperature increase in high-latitude ecosystems, eventually resulting in disrupted feedback methane emissions. The METHANOBASE project has been designed to investigate the intricate relations between microbial diversity and methane emissions in Arctic, Subarctic and Subantarctic ecosystems, under natural (baseline) conditions and in response to simulated temperature increments. We report here a small subunit ribosomal RNA (16S rRNA) analysis of lake, peatland and mineral soil ecosystems.
Versions
The table below shows only published versions of the resource that are publicly accessible.
How to cite
Researchers should cite this work as follows:
Barret M, Thalasso F, Gandois L, Martinez Cruz K, Sepulveda Jaureguy A, Lavergne C, Teisserenc R, Aguilar P, Gerardo-Nieto O, Etchebehere C, Martins B, Fochesatto J, Tananaev N, Svenning M, Seppey C, Tveit A, Chamy R, Soledad Astorga-España M, Mansilla A, Van de Putte A, Sweetlove M, Murray A, Cabrol L (2022): Bacteria and Archaea biodiversity in Arctic terrestrial ecosystems affected by climate change in Northern Siberia. v1.5. SCAR - Microbial Antarctic Resource System. Dataset/Metadata. https://ipt.biodiversity.aq/resource?r=methanobase&v=1.5
Rights
Researchers should respect the following rights statement:
The publisher and rights holder of this work is SCAR - Microbial Antarctic Resource System. This work is licensed under a Creative Commons Attribution (CC-BY 4.0) License.
GBIF Registration
This resource has been registered with GBIF, and assigned the following GBIF UUID: 3f922dfb-0b72-4130-933a-a2f4beb3eef7. SCAR - Microbial Antarctic Resource System publishes this resource, and is itself registered in GBIF as a data publisher endorsed by Scientific Committee on Antarctic Research.
Keywords
methane; greenhouse gas; bacteria; archaea; procaryote; peatland; wetland; soil; lake; sediment; metabarcoding; 16S rRNA; MiSeq; permafrost; palsa; Metadata; Metadata
Contacts
- Metadata Provider ●
- Author ●
- Point Of Contact
- Associate Professor
- Originator
- Originator
- Originator
- Originator
- Originator
- Originator
- Originator
- Originator
- Originator
- Originator
- Originator
- Originator
- Originator
- Originator
- Originator
- Originator
- Originator
- Originator
- Originator
- Originator
- Originator
- Metadata Provider ●
- Author ●
- Point Of Contact
- Associate professor
- Author
- Researcher
Geographic Coverage
North Siberia
Bounding Coordinates | South West [67.44, 86.59], North East [67.53, 86.71] |
---|
Taxonomic Coverage
Bacterial and Archaea diversity was profiled by targeting the V4-V5 region of the 16S SSU rRNA gene for high throughput metabarcode (amplicon) sequencing, using the Illumia MiSeq platform (2x 250bp).
Kingdom | Bacteria, Arcaea |
---|
Temporal Coverage
Start Date | 2016-07-22 |
---|
Project Data
METHANOgenic Biodiversity and activity in Arctic, subarctic and Subantarctic Ecosystems affected by climate change
Title | Methanobase |
---|---|
Identifier | METHANOBASE ELAC2014-DCC092 |
Funding | ERANET-LAC joint call 2014 |
Study Area Description | Siberia [67.444346 to 67.53515, 86.707043 to 86.591957] Lakes (water, sediments), peatlands (hollows, edges, hummocks) and mineral soils |
Design Description | The METHANOBASE project has been designed to investigate the intricate relations between microbial diversity and methane emissions in Arctic, Subarctic and Subantarctic ecosystems, under natural (baseline) conditions and in response to simulated temperature increments. |
The personnel involved in the project:
- Principal Investigator
- Principal Investigator
- Metadata Provider
- Metadata Provider
- Metadata Provider
- Metadata Provider
- Metadata Provider
- Author
Sampling Methods
Water samples were collected with a Van Dorn bottle. Sediments were sampled thanks to a grab-sampler, peat monoliths (approximately 30*30*30cm) were cut with a bread-knife and soil monoliths with a shovel.
Study Extent | Samples were collected in summer 2016, without any temporal replication. A total of 18 ecosystems were studied in Siberia, Russia (around Igarka). The selected sites are representative of this Arctic region: lakes (including glaciar, thermokarst), peatlands (including palsa complexes), taiga forest, tundra, discontinuous permafrost. In each site, various samples were collected to take into account the local heterogeneity: different depths in water column and sediments, soil horizons, hollows/edges/hummocks. |
---|
Method step description:
- After collection, samples were stored at 4°C prior to further processing. Liquid samples were filtered at 0.45µm until clogging and the filters were stored at -20°C. DNA was extracted from these filters using the PowerWater DNA isolation kit (MOBIO) while DNA was extracted from solid samples using the PowerSoil DNA isolation kit (MOBIO). DNA extracts were kept at -20°C. The V4-V5 region of 16S rRNA gene was amplified in the following conditions: 515F and 928R primers (Wang & Qian, 2009. doi:10.1371/journal.pone.0007401), 2min at 94°C, 30 cycles of 60s at 94°C, 40s at 65°C and 30s at 72°C, and 10 min at 72°C. Amplicon sequencing was carried out with Illumina MiSeq technology (2x250pb, V3). Denoising of the sequences dataset and OTU clustering was carried using the FROGS pipeline (Auer et al., 2017. doi:10.1093/bioinformatics/btx791). BLAST was used for taxonomic affiliation.
Additional Metadata
Purpose | This table reports the GPS coordinates of the ecosystems which were sampled for microbial survey, methane emission rates, potential methanogenic and methanotrophic activities measurement in lab, and physico-chemical characterization. |
---|---|
Alternative Identifiers | 3f922dfb-0b72-4130-933a-a2f4beb3eef7 |
https://ipt.biodiversity.aq/resource?r=methanobase |