說明
This dataset is a compilation of stable isotope ratios of C, N and S in tissues of 2456 sea stars sampled from 1985 to 2017 in the Southern Ocean (Antarctica and Subantarctic Islands). Stable isotope values were measured in the framework of Baptiste Le Bourg's PhD thesis at University of Liège, entitled “Trophic ecology of Southern Ocean sea stars: Influence of environmental drivers on trophic diversity”. Samples were provided by the University of Liège (Belgium), the Université Libre de Bruxelles (Belgium), the National Museum of Natural History (Paris, France) and the Institute of Oceanology of the Polish Academy of Sciences (Sopot, Poland). There could be duplicate records from collections of these institutes published on GBIF and OBIS. This work was supported by BELSPO through the vERSO and RECTO projects (contracts no. BR/132/A1/vERSO and BR/154/A1/RECTO). This dataset is published by SCAR-AntOBIS under the license CC-BY 4.0. Please follow the guidelines from the SCAR and IPY Data Policies (https://www.scar.org/excom-meetings/xxxi-scar-delegates-2010-buenos-aires-argentina/4563-scar-xxxi-ip04b-scar-data-policy/file/) when using the data. If you have any questions regarding this dataset, don't hesitate to contact us via the contact information provided in the metadata or via data-biodiversity-aq@naturalsciences.be. Issues with dataset can be reported at https://github.com/biodiversity-aq/data-publication/
資料紀錄
此資源出現紀錄的資料已發佈為達爾文核心集檔案(DwC-A),其以一或多組資料表構成分享生物多樣性資料的標準格式。 核心資料表包含 2,456 筆紀錄。
亦存在 1 筆延伸集的資料表。延伸集中的紀錄補充核心集中紀錄的額外資訊。 每個延伸集資料表中資料筆數顯示如下。
此 IPT 存放資料以提供資料儲存庫服務。資料與資源的詮釋資料可由「下載」單元下載。「版本」表格列出此資源的其它公開版本,以便利追蹤其隨時間的變更。
版本
以下的表格只顯示可公開存取資源的已發布版本。
如何引用
研究者應依照以下指示引用此資源。:
Moreau C, Le Bourg B, Balazy P, Danis B, Eléaume M, Jossart Q, Kuklinski P, Lepoint G, Saucède T, Van de Putte A, Gan Y, Michel L (2021): Stable isotope ratios of C, N and S in Southern Ocean sea stars (1985-2017). v1.5. SCAR - AntOBIS. Dataset/Occurrence. https://ipt.biodiversity.aq/resource?r=antarctic_subantarctic_asteroidea_isotopes&v=1.5
權利
研究者應尊重以下權利聲明。:
此資料的發布者及權利單位為 SCAR - AntOBIS。 This work is licensed under a Creative Commons Attribution (CC-BY 4.0) License.
GBIF 註冊
此資源已向GBIF註冊,並指定以下之GBIF UUID: ff3984d7-84bd-4f3a-b843-666faa4c1696。 SCAR - AntOBIS 發佈此資源,並經由Ocean Biodiversity Information System同意向GBIF註冊成為資料發佈者。
關鍵字
SEA STARS; ECHINODERMS; ISOTOPES; Specimen; Occurrence
聯絡資訊
- 元數據提供者 ●
- 連絡人
- 連絡人
地理涵蓋範圍
Antarctic and Sub-Antarctic regions of the Southern Ocean
界定座標範圍 | 緯度南界 經度西界 [-76.715, -127.267], 緯度北界 經度東界 [-47.717, 162.201] |
---|
分類群涵蓋範圍
Echinodermata, Asteroidea
Kingdom | Animalia |
---|---|
Phylum | Echinodermata |
Class | Asteroidea (Sea star) |
Order | Brisingida, Forcipulatida, Notomyotida, Paxillosida, Spinulosida, Valvatida, Velatida |
時間涵蓋範圍
起始日期 / 結束日期 | 1985-01-11 / 2017-10-08 |
---|
計畫資料
The data presented here were obtained in the framework of a PhD project. The goal of this PhD project was to study the trophic ecology of sea stars in the Southern Ocean using stable isotopes of carbon, nitrogen and sulfur. In particular, the relationship between trophic ecology and environmental conditions was assessed. The functioning of Southern Ocean ecosystems and the impact of climate change on them was thus a central theme of the PhD thesis. Indeed, changes in the availability of trophic resources induced by environmental changes can lead to changes of trophic ecology of species and of trophic interactions between them.
計畫名稱 | Trophic ecology of Southern Ocean sea stars: Influence of environmental drivers on trophic diversity |
---|---|
辨識碼 | BR/154/A1/RECTO |
經費來源 | This project was funded thanks to a FRIA doctoral grant (Fund for research training in industry and agriculture) provided by the FRS-FNRS. This PhD thesis was carried out as part of the vERSO (Ecosystem Responses to global change: a multiscale approach in the Southern Ocean; BR/132/A1/vERSO) and RECTO (Refugia and Ecosystem Tolerance in the Southern Ocean; BR/154/A1/RECTO) projects, funded by the Belgian Science Policy Office (BELSPO). Other funders include: National Science Center Poland OPUS grant number 2020/37/B/ST10/02905: Influence of rapidly progressing climate change on polar marine organisms - investigations along naturally occurring environmental analogues of future climate changes French Polar Institute (IPEV) IPEV research program 1124 REVOLTA - Ressources Ecologiques et Valorisation par un Observatoire à Long terme en Terre Adélie Australian Antarctic Division (AAD) IPY project 53 CEAMARC - Collaborative East Antarctic MARine Census |
參與計畫的人員:
取樣方法
A double sampling strategy was set up to maximise the scope of this PhD thesis. First, sea stars were collected in the Southern Ocean during campaigns taking place in the framework of the vERSO and RECTO projects from December 2015 to March 2017. Second, suitable samples originating from multiple oceanographic campaigns and surveys from January 1985 to January 2015 were retrieved from archived collections stored in museums or institutions. Institutions that provided samples included the Université Libre de Bruxelles (Belgium), the National Museum of Natural History (Paris, France) and the Institute of Oceanology of the Polish Academy of Sciences (Sopot, Poland). Storage: Depending of the sampling campaign, sea stars were frozen, dried, stored in ethanol or fixed with formaldehyde and then stored in ethanol.
研究範圍 | Sea stars were sampled in the Southern Ocean from 1985 to 2017 throughout multiple oceanographic campaigns. |
---|---|
品質控管 | - Isotopic ratios were expressed in ‰ using the widespread δ notation (Coplen 2011) and relative to the international references Vienna Pee Dee Belemnite (for carbon), Atmospheric Air (for nitrogen) and Vienna Canyon Diablo Troilite (for sulfur). Sucrose (IAEA-C-6; δ13C=−10.8 ± 0.5‰; mean ± standard deviation), ammonium sulfate (IAEA-N-1; δ15N= 0.4 ± 0.2‰; mean ± SD) and silver sulfide (IAEA-S-1; δ34S = −0.3‰) were used as primary analytical standards for stable isotope ratios. Sulfanilic acid (Sigma-Aldrich; δ13C=−25.6 ± 0.4‰; δ15N=−0.13 ± 0.4‰; δ34S = 5.9 ± 0.5‰; means ± SD) was used as a secondary analytical standard for stable isotope ratios and as elemental standard. Standard deviations on multi-batch replicate measurements of secondary and internal laboratory standards (sea star tegument), analyzed interspersed with samples (one replicate of each standard every 15 analyses), were 0.3‰ for δ13C and δ15N and 0.5‰ for δ34S. - All records were validated. - Coordinates were plotted on map to verify the geographical location and locality. - All scientific names were checked for typo and matched to the species information backbone of Worlds Register of Marine Species (http://marinespecies.org/) and LSID were assigned to each taxa as scientificNameID. - Event date and time were converted into ISO 8601 |
方法步驟描述:
- Sample preparation: For each sea star, one or several arms were separated from the central disc. Internal organs and podia were removed in each arm. With the exception of the already dried samples, the tegument and the podia of each arm were washed with demineralised water and oven-dried at 50°C during 48 hours. All samples were then homogenised into powder. Carbonates were removed from subsamples by exposing subsamples to 37 % hydrochloric acid vapour during 48 hours. Acidified subsamples were then kept at 60°C until further sample preparation.
- Stable isotope analysis: The subsamples were then precisely weighed (ca 2.5-3 mg) in 5×8 tin cups with ca 3 mg of tungsten trioxide. Their elemental composition and their stable isotope values were analysed with an elemental analyser coupled to a continuous-flow isotope-ratio mass spectrometer.
- Impact of preservation on stable isotope values: Correction factors were added to the δ13C and δ34S values of sea stars fixed with formaldehyde and/or stored in ethanol as fixation in formaldehyde and preservation in ethanol impact stable isotope values in sea stars (Le Bourg et al., 2020). For samples stored in ethanol, a correction factor of –0.6 ‰ was subtracted to δ13C values. For samples fixed with formaldehyde and then stored in ethanol, a correction factor of 0.2 ‰ was added to δ13C values to take into account the effects of both ethanol (–0.6 ‰) and formaldehyde (+0.8 ‰) on δ13C values. A correction factor of 1.5 ‰ was also added to δ34S values for samples fixed with formaldehyde.
- Instrumentation: Stable isotope ratio measurements were performed by continuous flow–elemental analysis–isotope ratio mass spectrometry (CF-EA-IRMS) at University of Liège (Belgium), using a vario MICRO cube C-N-S elemental analyzer (Elementar Analysensysteme GmbH, Hanau, Germany) coupled to an IsoPrime100 isotope ratio mass spectrometer (Isoprime, Cheadle, United Kingdom).
- Taxonomy and systematics: In the laboratory, sea stars were identified to the lowest taxonomic level possible either using morphological or molecular characters. Moreover, in several genera where clades showed a clear pattern of geographic or bathymetric distribution, results of genetic analyses were used as proxies to assign specimens to a probable species (Moreau 2019, Moreau et al. 2019). Bathybiaster sp. individuals sampled between 0 and 1000 m on the Antarctic continental shelf were considered as Bathybiaster loripes, those sampled deeper than 2000 m, as well as on the Kerguelen Plateau were considered as Bathybiaster vexillifer (Moreau 2019) while no species was assigned to one individual sampled in the South Sandwich Islands between 1000 and 1500 m. Chitonaster sp. individuals sampled in Western Antarctic Peninsula and South Orkney Island were considered as Chitonaster sp. 2. Diplasterias sp. individuals sampled in Western Antarctic Peninsula and South Orkney Island were considered as Diplasterias sp. 1, those sampled in South Sandwich Islands and Adélie Land as Diplasterias sp. 2 while no species was assigned to individuals sampled in the Weddell Shelf. Lysasterias sp. individuals sampled in Adélie Land were considered as Lysasterias sp. 1. Notasterias sp. individuals sampled in South Orkney Islands were considered as Notasterias sp. 1. Odontaster sp. individuals sampled on the Kerguelen Plateau were considered as Odontaster penicillatus. Psilaster charcoti individuals sampled near Bouvet Island, in the South Atlantic ecoregion, were considered as Psilaster charcoti – clade 2. By contrast, this method could not be used for genera for which no clear geographic or bathymetric patterns of distribution were recorded (e.g. Acodontaster). Consequently, these individuals remained identified down to the genus. Similarly, individuals that could not be identified further than the family were referred to by their family name (Echinasteridae and Pterasteridae). Nomenclature was thoroughly checked using the Taxon Match Tool implemented in the World Register of Marine Species, WoRMS (WoRMS Editorial Board 2021).
引用文獻
- Le Bourg, Baptiste, Gilles Lepoint, and Loïc N. Michel. 2020. “Effects of Preservation Methodology on Stable Isotope Compositions of Sea Stars.” Rapid Communications in Mass Spectrometry 34 (2). https://doi.org/10.1002/rcm.8589.
- Camille Moreau. Diversity and phylogeography of Southern Ocean sea stars (Asteroidea). Biodiversity and Ecology. Université Bourgogne Franche-Comté; Université libre de Bruxelles (1970-..), 2019. English. ⟨NNT : 2019UBFCK061⟩. ⟨tel-02489002⟩
- Moreau, C, Danis, B, Jossart, Q, et al. Is reproductive strategy a key factor in understanding the evolutionary history of Southern Ocean Asteroidea (Echinodermata)? Ecol Evol. 2019; 9: 8465– 8478. https://doi.org/10.1002/ece3.5280
- Coplen, T.B. (2011), Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun. Mass Spectrom., 25: 2538-2560. https://doi.org/10.1002/rcm.5129